Knowing that:
The standard score, or z-score, represents the number of
Standard deviations that separate a random variable x from
average.
Formula:
[tex]z = \frac{value-average}{standard\:deviation} [/tex]
Data:
z = ?
value = 26
average = 20
standard deviation = 4
Solving:
[tex]z = \frac{value-average}{standard\:deviation} [/tex]
[tex]z = \frac{26-20}{4} [/tex]
[tex]z = \frac{6}{4} [/tex]
[tex]\boxed{\boxed{z = 1.5}} \end{array}}\qquad\quad\checkmark[/tex]
Answer:
[tex]\underline{26\:is\:1.5\:standard\:deviation\:in\:relation\:to\:the\:average.}[/tex]